\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(=3\left(2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^8}-\frac{1}{2^9}\right)=3\left(2-\frac{1}{2^9}\right)=6-\frac{3}{2^9}\)