\(S=1+2+5+14+....+\frac{3^{x-1}+1}{2}\)
\(=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+.....+\frac{3^{x-1}+1}{2}\)
\(=\frac{\left(3^0+1\right)+\left(3^1+1\right)+\left(3^2+1\right)+.....+\left(3^{x-1}+1\right)}{2}\)
\(=\frac{\left(1+3+3^2+.....+3^{x-1}\right)+x}{2}\)
Đặt \(A=1+3+3^2+....+3^{x-1}\)
\(3A-A=\left(3+3^2+....+3^x\right)-\left(1+3+....+3^{x-1}\right)\)
\(2A=3^x-1\Rightarrow A=\frac{3^x-1}{2}\)
\(\Rightarrow S=\frac{\frac{3^x-1}{2}+x}{2}\)