\(S=1+a+a^2+a^3+....+a^n\)
\(a\times S=a+a^2+a^3+....+a^{n+1}\)
\(a\times S-a=\left(a-a\right)+\left(a^2-a^2\right)+.....+a^{n+1}-1\)
\(a\times S-a=a^{n+1}-1\)
==> \(S=\frac{a^{n+1}-1}{a-1}\)
\(S=1+a+a^2+a^3+.....+a^n\)
\(\Leftrightarrow aS=a\left(1+a+a^2+a^3+....+a^n\right)\)
\(=\left(a+a^2+a^3+a^4+.....+a^n\right)+a^{n+1}\)
\(=a.S-S=\left(a+a^2+....+a^n+a^{n+1}\right)-\left(1+a+a^2+....+a^n\right)\)
\(=a^{n+1}-1\)
\(\Rightarrow S.\left(a-1\right)=a^{n+1}-1\)
\(\Rightarrow S=\frac{a^{n+1}-1}{a-1}\)