Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duy Saker Hy

Tính tổng các ps sau

a,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

b,\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)

Trần Phúc
15 tháng 8 2017 lúc 17:53

Ta có:

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2018}=\frac{2017}{2018}\)

\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)

\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2017}\right)=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow B=\frac{1008}{2017}\)


Các câu hỏi tương tự
Tứ diệp thảo mãi mãi yêu...
Xem chi tiết
Lê Vương Đạt
Xem chi tiết
Đặng Linh Chi
Xem chi tiết
Ruby Sweety
Xem chi tiết
Phạm Thị Thanh Huyền
Xem chi tiết
Akali
Xem chi tiết
nguyen khanh huyen
Xem chi tiết
Nguyen Le Quynh Trang
Xem chi tiết
ngo thao
Xem chi tiết