Tính S là tổng tất cả các nghiệm của phương trình 4( 22x + 2-2x)– 4( 2x + 2-x) - 7 = 0.
A. S = 1
B. S = -1
C. S = 3
D. S = 0
Tổng các nghiệm của phương trình log 2 ( x - 2 ) + log 2 ( x - 4 ) 2 = 0 bằng
A. 9
B. 3 + 2
C. 12
D. 6 + 2
Tìm tập hợp nghiệm của phương trình 2 x 2 - x - 4 = 0
A. {1;2} B. {2;3}
C. {-2;3} D. {2;-3}
Tìm tập hợp nghiệm của phương trình 2 x 2 - x - 4 = 0
A. {1;2} B. {2;3}
C. {-2;3} D. {2;-3}
Giả sử ∫ 2 x + 3 x ( x + 1 ) ( x + 2 ) ( x + 3 ) + 1 d x = - 1 g ( x ) + C (C là hằng số). Tính tổng của các nghiệm của phương trình g(x) = 0
A. -1
B. 1
C. 3
D. -3
Cho phương trình m - 1 log 1 2 2 x - 2 2 + 4 m - 5 log 1 2 1 ( x - 2 ) + 4 m - 4 = 0 (với m là tham số). Gọi S = a ; b là tập hợp các giá trị của m để phương trình có nghiệm trên đoạn 5 2 ; 4 . Tính a + b .
A. 7 3 .
B. - 2 3 .
C. - 3 .
D. 1034 237 .
Nghiệm của phương trình log 4 2 log 3 1 + log 2 1 + 3 log 2 x = 1/2 là
A. x = 1 B. x = 2
C. x = 3 D. x = 0
Cho phương trình m . l n 2 ( x + 1 ) - ( x + 2 - m ) l n ( x + 1 ) - x - 2 = 0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0 < x 1 < 2 < 4 < x 2 là khoảng . Khi đó a thuộc khoảng
Cho hàm số f(x)=a x 2 -2(a+1)x+a+2 (a ≠ 0)
Tính tổng S và tích P của các nghiệm của phương trình f(x) =0. Khảo sát sự biến thiên và vẽ đồ thị của S và P theo a.