\(B=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+....+\frac{1}{97.98.99.100}\)
\(B=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+...+\frac{100-97}{97.98.99.100}\)
\(B=\frac{1}{3}\cdot\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(B=\frac{1}{3}\cdot\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)
\(B=\frac{1}{3}\cdot\frac{161699}{970200}=\frac{161699}{2910600}\)