1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Bài 2:
1.Chứng minh rằng : 9999931999 - 555551997 chia hết cho 5
2.Chứng minh rằng : 1725 - 1321 + 244 Chia hết cho 10
3. Chứng minh rằng: 172008 - 112008 - 32008 + 1 chia hết cho 10
chứng minh rằng a^2+a+1 ko chia hết cho 2008
Bài 1: Chứng minh rằng
a, Tổng của ba số tự nhiên liên tiếp chia hết cho 3
b, tổng của 4 số tự nhiên chia hết cho 4
chứng tỏ rằng :
a) nếu 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 . Chứng minh tổng quát .
b) nếu 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Chứng minh rằng A=11.12.13.14+21.22.23.24.25 chia hết cho 5,9,15,77
Chứng minh rằng B=(2012^9+2012^8+2012^7-2012^6) chia hết cho 2013
Chứng minh rằng A= 7+7^2+7^3+…+7^2000 chia hết cho 8
Tìm n thuộc tập hợp N để
a, n+6 chia hết cho n b,4n+5chia hết cho n. c, n+5 chia hết cho n+1. đ, 3n + 4 chia hết cho n-1
1. Cho 3.a +2.b chia hết cho 17
chứng minh rằng : 10.a +b chia hết cho 17
2.Cho a = 5.b chia hết cho 17
chứng minh rằng: 10.a +b chia hết cho 17
Bài 1 : tìm n € N*
2^n+1 chia hết 7
n^5+1 chia hết n^3+1
Bài 2: chứng minh rằng
a+b+c chia hết cho 6 => a^3+b^3+c^3 chia hết cho 6
36^38+41^43 chia hết cho 77
5.25^n+18.2^n chia hết cho 23
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9