Bài làm :
Ta có :
\(A=1+2+2^2+...+2^{2017}\text{(1)}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2018}\text{(2)}\)
Lấy vế (2) trừ đi vế (1) ; ta có :
\(2A-A=\left(2+2^2+2^3+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+1^{2017}\right)\)
\(\Rightarrow A=2^{2018}-1\)
Vậy A=22018 - 1
A = 1 + 2 + 22 + 23 + ... + 22017
⇔ 2A = 2( 1 + 2 + 22 + 23 + ... + 22017 )
⇔ 2A = 2 + 22 + 23 + ... + 22018
⇔ A = 2A - A
= 2 + 22 + 23 + ... + 22018 - ( 1 + 2 + 22 + 23 + ... + 22017 )
= 2 + 22 + 23 + ... + 22018 - 1 - 2 - 22 - 23 - ... - 22017
= 22018 - 1