A=1/1x2+1/2x3+.....+1/99x100
A=1/1-1/2+1/2-1/3+...+1/99-1/100
A=1/1 - 1/100
A=99/100
ta có: A=1/1x2+1/2x3+...+1/99x100
A=1-1/2+1/2-1/3+...+1/99-1/100
A=1-1/100
A=99/100
A=1/1x2+1/2x3+.....+1/99x100
BL:
A=1/1x2+1/2x3+.....+1/99x100
A=1/1-1/2+1/2-1/3+...+1/99-1/100
A=1/1 - 1/100
A=99/100
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
Ủng hộ mk nha !!! ^_^
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{1}-\frac{1}{100}\)
\(A=\frac{100}{100}-\frac{1}{100}\)
\(A=\frac{99}{100}\)
= 1-1/2+1/2-1/3+...1/99+1/100
=1-1/100
=99/100