=3*(1/1.2+1/2.3+...+1/2018.2019)
=3(1-1/2+1/2-1/3+...+1/2018-1/2019)
=3(1-1/2019)
=3*2018/2019
=2018/673
\(A=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{2018.2019}\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(=3.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=3.\left(1-\frac{1}{2019}\right)\)
\(=3.\frac{2018}{2019}=\frac{2018}{673}\)