Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}=\frac{99}{100}\)
=1/2-1/3+1/3-1/4+1/4-1/5+.....+1/99-1/100
=1/2-1/100 = 49/100
1/2.3 + 1/3.4 + ....+ 1/ 99.100 =99/100
tich ủng hộ nha