Gọi A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
4A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
=> 4A=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)[(n+3)-(n-1)]
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)
=n(n+1)(n+2)(n+3)
4A+1=n(n+1)(n+2)(n+3)+1=n4+6.n3+11.n2+6n+1=(n2+3n+1)2
=>\(\sqrt{4A+1}\)=n2+3n+1
\(3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(3A=1\cdot2\cdot3-0\cdot1\cdot2+2\cdot3\cdot4-1\cdot2\cdot3+...+\)\(n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(3A=n\left(n+1\right)\left(n+2\right)-0\cdot1\cdot2\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
câu còn lại nhân 4 rồi lm tương tự