Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
chíp chíp

Tính : \(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)

Linh Nguyễn
20 tháng 9 2017 lúc 18:04

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)+1\left(n+2\right)}\right)\)

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n^2+2n+n+2}\right)\)

\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n^2+3n+2}\right)\)

\(S_n=\dfrac{1}{4}-\dfrac{1}{2\left(n^2+3n+2\right)}\)

\(S_n=\dfrac{1}{4}-\dfrac{1}{2n^2+6n+4}\)

\(S_n=\dfrac{2n^2+6n+4}{4\left(2n^2+6n+4\right)}-\dfrac{4}{4\left(2n^2+6n+4\right)}\)

\(S_n=\dfrac{2n^2+6n+4}{8n^2+48n+16}-\dfrac{4}{8n^2+48n+16}\)

\(S_n=\dfrac{2n^2+6n}{8n^2+48n+16}\)

\(S_n=\dfrac{2\left(n^2+3n\right)}{2\left(4n^2+24n+8\right)}=\dfrac{n^2+3n}{4n^2+24n+8}\)

Nguyễn Thị Hồng Nhung
20 tháng 9 2017 lúc 18:35

\(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\\ 2S_n=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\\ 2S_n=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\\ =\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\\ =\dfrac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\\ =>S_n=\dfrac{\left(n+1\right)\left(n+2\right)-2}{4\left(n+1\right)\left(n+2\right)}\)

Giải sai r nhéLinh Nguyễn

DƯƠNG PHAN KHÁNH DƯƠNG
21 tháng 9 2017 lúc 14:16

\(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+..........+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(2S_n=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+....+\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

\(2S_n=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

\(2S_n=\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

\(2S_n=\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow S_n=\dfrac{\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}}{2}\)


Các câu hỏi tương tự
chíp chíp
Xem chi tiết
Xem chi tiết
Vũ Thị Phương
Xem chi tiết
Đức Vương Hiền
Xem chi tiết
Iris Eri
Xem chi tiết
Hương Anh
Xem chi tiết
WW
Xem chi tiết
Trần Quỳnh Như
Xem chi tiết