\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{99}\right).\)
\(P=\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right)....\left(\frac{99}{99}-\frac{1}{99}\right)\)
\(P=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{98}{99}\)
\(P=\frac{1.2.3.4...98}{2.3.4....99}\)
Tới bước này cậu rút hết thì ta sẽ còn
\(P=\frac{1}{99}\)
Vậy \(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{99}\right)=\frac{1}{99}\)
\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\)
\(P=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}\)
\(P=\frac{1.2.3...98}{2.3.4...99}\)
\(P=\frac{1}{99}\)
\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\)
\(P=\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right)...\left(\frac{99}{99}-\frac{1}{99}\right)\)
\(P=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}\)
\(P=\frac{1.2.3...98}{2.3.4...99}\)
Rút gọn những hết số giống nhau thì ta có :
\(P=\frac{1}{99}\)
\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\)
\(\Leftrightarrow P=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{4}{4}-\frac{1}{4}\right)...\left(\frac{99}{99}-\frac{1}{99}\right)\)
\(\Leftrightarrow P=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}\)
\(\Leftrightarrow P=\frac{1.2.3...98}{2.3.4...99}\)
\(\Leftrightarrow P=\frac{1}{99}\)
Vậy \(P=\frac{1}{99}\)