Chứng minh rằng:
\(\sqrt[3]{\sqrt[5]{\frac{32}{5}}-\sqrt[5]{\frac{27}{5}}}=\sqrt[5]{\frac{1}{25}}+\sqrt[5]{\frac{3}{25}}-\sqrt[5]{\frac{9}{25}}\)
tính :
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.....+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(B=\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{10}}+....+\frac{1}{\sqrt{220}+\sqrt{225}}\)
cmr\(\frac{1}{\left(\sqrt{2}+\sqrt{5}\right)^3}+\frac{1}{\left(\sqrt{5}+\sqrt{8}\right)^3}+...+\frac{1}{\left(\sqrt{32+\sqrt{35}}\right)^3}<\frac{5}{72}\)
Chứng minh rằng:
a)\(\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^8>3^6\)
b) \(\sqrt[3]{\sqrt[5]{\frac{32}{5}}-\sqrt[5]{\frac{27}{5}}}=\sqrt[5]{\frac{1}{25}}+\sqrt[5]{\frac{3}{25}}-\sqrt[5]{\frac{9}{25}}\)
TÍNH GIÁ TRỊ BIỂU THỨC :
mn nhanh giúp mk nhé ^-^
A= \(\left(1-\sqrt{18}+\sqrt{32}\right)\sqrt{3-2\sqrt{2}}\)
B=\(\frac{3}{6+\sqrt{35}}-\frac{3}{6-\sqrt{35}}\)
Tính
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{225\sqrt{224}+224\sqrt{225}}\)
rút gọn
\(E=\frac{\sqrt{8}+3}{\sqrt{17-3\sqrt{32}}}+\frac{3+2\sqrt{5}}{\sqrt{29-12\sqrt{5}}}-\frac{1}{\sqrt{12+2\sqrt{35}}}\)
Rút Gọn A=\(\frac{\left(\frac{1}{4}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\frac{1}{25}}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{35}-\frac{\sqrt{2}}{5}\right)\frac{5}{7}}\)
B=\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}\)
C=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Rút Gọn
a,\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}\)
b,\(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)
c,\(\left(\sqrt{12}+2\sqrt{27}\right)\frac{\sqrt{3}}{2}-\sqrt{150}\)
d,\(\left(\sqrt{18}+\sqrt{0,5}-3\sqrt{\frac{1}{3}}\right)-\left(\sqrt{\frac{1}{8}-\sqrt{75}}\right)\)
e,\(6\sqrt{\frac{8}{9}}-5\sqrt{\frac{32}{25}}+14\sqrt{\frac{18}{49}}\)
f,\(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)
g,\(\left(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\right)\sqrt{3}\)
h,\(\left(6\sqrt{\frac{8}{9}}-5\sqrt{\frac{32}{25}}+14\sqrt{\frac{18}{49}}\right)\sqrt{\frac{1}{2}}\)
i,\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
j,\(\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+7\right):\sqrt{7}\)