Cho hằng đẳng thức mở rộng :
\(\left(a-b\right)^n=\)an - Cn1 . an-1 . b + Cn2 . an-2 . b - ... + Cnn-1 . a . bn-1 + bn
Trong đó \(C^k_n\) là tổ hợp chập k của n .
\(C^k_n=\frac{n!}{k!.\left(n-k\right)!}\)
Từ đó tính tổng các hệ số của \(\left(5x-3\right)^6\)
a) Cho đa thức f(x) = (x2 + 3x - 1)2012
Tính tổng các hệ số của các hạng tử chứa lũy thừa bậc chẵn của x.
b) Cho dãy số các số tự nhiên u0, u1, u2, ... có u0 = 1 và un+1.un-1 = k.un (với k, n thuộc R*). Tính k và u1, biết u2012 = 2012
a) Cho đa thức f(x) = (x2 + 3x - 1)2012
Tính tổng các hệ số của các hạng tử chứa lũy thừa bậc chẵn của x.
b) Cho dãy số các số tự nhiên u0, u1, u2, ... có u0 = 1 và un+1.un-1 = k.un (với k, n thuộc R*). Tính k và u1, biết u2012 = 2012
Cho STN N = 20172016. Viết N thành tổng của k (k là STN khác 0) số tự nhiên nào đó n1;n2;...;nk. Đặt Sn = n13 + n23 +...+ nk3
Tìm số dư khi S chia cho 6
Tính các tổng :
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\) ( Hướng dẫn : \(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\))
b) \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
( Hướng dẫn : \(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}\left(\frac{1}{k}+\frac{1}{k+2}\right)-\frac{1}{k+1}\))
Tính tổng của B :B=\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
HD:\(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}\left(\frac{1}{k}+\frac{1}{k+2}\right)-\frac{1}{k+1}\)
Cho a = 2^k +1( k là số tự nhiên ) là một số nguyên tố .Chứng minh k=0 hoặc k=2^n ( n là số tự nhiên)
Bài 1: Thực hiện phép tính:
a) 6xn( x2 - 1 ) + 2x( 3xn-1 + 1 )
b) \(\left(\frac{4}{3}x^{n+1}-\frac{1}{2}y^n\right).2xy-\left(\frac{2}{3}x^{n+1}-\frac{5}{6}y^n\right).7xy\)
Bài 2: Tìm các hệ số a, b, c biết rằng:
-3xk( ax2bx + c ) = 3xk+2 - 12xk + 3k với mọi x
Bài 3
Tìm ba số tự nhiên chẵn liên tiếp, biết tích của hai số sau lớn hơn tích hai số đầu là 192.
Chứng minh rằng với A=1+2n+4n là số nguyên tố (n thuộc N*) thì n=3k (k thuộc N)