tính S\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\)
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
Cho \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)
So sánh S với 1
Tính:
\(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)
Câu 1: Thực hiện phép tính:
29 x ( 19 - 13) - 19 x (29 - 13)
Câu 2: Tính tổng
S = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)
Tính:
\(E=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(F=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
Bài 1: Tìm x, biết:
\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+.....+\frac{1}{49.50}x=1\)
Bài 2: Chứng minh rằng:
\(a)A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}< 2\)
\(b)B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{63}< 6\)
\(c)C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.......\frac{9999}{10000}< \frac{1}{100}\)
Bài 3: Tính tổng:
\(S=\frac{1+2+2^2+2^3+.....+2^{2008}}{1-2^{2009}}\)
Tính Q=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}{\frac{100-1}{1}+\frac{102-2}{2}+...+\frac{100-99}{99}}\)
tính nhanh: \(\frac{100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)