\(S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+..\frac{3}{2^{10}}\)
\(\Leftrightarrow2S=6+3+\frac{3}{2}+\frac{3}{2^2}+..\frac{3}{2^9}\)
\(\Leftrightarrow2S-S=6+3+\frac{3}{2}+\frac{3}{2^2}+..\frac{3}{2^9}-3-\frac{3}{2}-\frac{3}{2^2}-\frac{3}{2^3}-...-\frac{3}{2^{10}}\)
\(\Leftrightarrow S=6-\frac{3}{2^{10}}\)
\(\Leftrightarrow S=\frac{6144}{1024}-\frac{3}{1024}\)
\(\Leftrightarrow S=\frac{6141}{1024}\)