S=\(\frac{1}{2}\)+\(\frac{1}{4}\)+\(\frac{1}{8}\)+.............+\(\frac{1}{1024}\)
S=1-1/2+1/2-1/4+1/4-1/8+.........+1/512-1/1024
S=1-1/1024
S=1023/1024
Vậy s=1023/1024
Ta có : \(\frac{1}{2}=1-\frac{1}{2};\frac{1}{4}=\frac{1}{2}-\frac{1}{4};\frac{1}{8}=\frac{1}{4}-\frac{1}{8};...;\frac{1}{1024}=\frac{1}{512}-\frac{1}{1024}\)
Vậy \(S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)
= \(1-\frac{1}{1024}=\frac{1023}{1024}\)