Tính \(Q=1\cdot100+2\cdot99+3\cdot98+4\cdot97+.....+98\cdot3+99\cdot2+100\cdot1\)
So sánh phân số
a,A=\(\frac{1\cdot1!+2\cdot2!+3\cdot3!+.....+100\cdot100!}{1\cdot199+2\cdot197+3\cdot195+.....+100\cdot1}\)với B = \(\frac{99!}{33}\)
TÍNH : \(\frac{1\cdot2016+2\cdot2015+...+2015\cdot2+2016\cdot1}{1\cdot2+2\cdot3+...+2016\cdot2017}\)
CM :\(\frac{1\cdot2-1}{2!}+\frac{2\cdot3-1}{3!}+\frac{3\cdot4-1}{4!}+...+\frac{99\cdot100-1}{100!}<2\)
chứng tỏ \(\frac{1}{1\cdot2}+\frac{1}{1\cdot2\cdot3}+\frac{1}{1\cdot2\cdot3\cdot4}+...+\frac{1}{1\cdot2\cdot3\cdot...\cdot100}< 1\)
Tính
\(A=1\cdot2^2+2\cdot3^2+3\cdot4^2+.....+99\cdot100^2\)
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+.....+\frac{1}{98\cdot99\cdot100}=\frac{1}{k}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)
Số k trong đẳng thức trên có giá trị là ?
Tính tổng S= \(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+.......+\frac{2}{98\cdot99}+\frac{2}{99\cdot100}\)
Ai xong trước mình tích cho
Tính: \(B=\frac{100^2+1^2}{100\cdot1}+\frac{99^2+2^2}{99\cdot2}+\frac{98^2+3^2}{98\cdot3}+...+\frac{52^2+49^2}{52\cdot49}+\frac{51^2+50^2}{51\cdot50}\)