\(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\left(1+n-\frac{n}{n+1}\right)^2}=1+n-\frac{n}{n+1}\text{ }\left(n>0\right)\)
\(P==1+2015-\frac{2015}{2016}+\frac{2015}{2016}=2016\)
\(\left(1+n-\frac{n}{n+1}\right)^2=1+n^2+\frac{n^2}{\left(n+1\right)^2}+2\left(n-\frac{n}{n+1}-\frac{n^2}{n+1}\right)\)
\(=1+n^2+\frac{n^2}{\left(n+1\right)^2}+2.\frac{n^2+n-n-n^2}{n+1}\)
\(=1+n^2+\frac{n^2}{\left(n+1\right)^2}\)