\(P=\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{13}}\)
\(P=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)
\(P=\frac{3\cdot\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{11\cdot\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}=\frac{3}{11}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2015}}+\frac{1}{3^{2016}}\)
\(\frac{1}{B}=3+3^2+3^3+...+3^{2015}+3^{2016}\)
\(\frac{3}{B}=3^2+3^3+3^4+...+3^{2016}+3^{2017}\)
\(\frac{3}{B}-\frac{1}{B}=\left(3^2+3^3+3^4+...+3^{2016}+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2015}+3^{2016}\right)\)
\(\frac{2}{B}=3^{2017}-3\)
\(B=\frac{2}{3^{2017}-3}\)
P=\(\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{13}}\)
P=\(\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{3}+\frac{11}{7}+\frac{11}{3}}\)
P=\(\frac{\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{\frac{1}{11}.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}\)
P=\(\frac{\frac{1}{3}}{\frac{1}{11}}=\frac{1}{3}:\frac{1}{11}=\frac{11}{3}\)
B=\(\frac{1}{3}+\frac{1}{^{3^2}}+\frac{1}{3^3}+................+\frac{1}{3^{2015}}+\frac{1}{3^{2016}}\)
B=\(\left(\frac{1}{3}\right)^1+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2015}+\left(\frac{1}{3}\right)^{2016}\)
2B=\(\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+\left(\frac{1}{3}\right)^4+...+\left(\frac{1}{3}\right)^{2016}+\left(\frac{1}{3}\right)^{2017}\)
_
B=\(\left(\frac{1}{3}\right)^1+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2015}+\left(\frac{1}{3}\right)^{2016}\)
B=\(\left(\frac{1}{3}\right)^1-\left(\frac{1}{3}\right)^{2017}\)