\(S=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}\)
\(S=\frac{1}{2}\cdot\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\right)\)
\(S=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(S=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(S=\frac{1}{2}\cdot\frac{32}{99}\)
\(S=\frac{16}{99}\)
B = 1/3.5 + 1/.5.7 + 1/7.9 + 1/97.99
2B = 2/3.5 + 2/5.7 + 2.7.9 + 2/97.99
= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/97 - 1/99
= 1/3 - 1/99
= 32 / 99
suy ra B = 32/99 : 2 = 16/99