\(S=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+.......+\frac{1}{49\cdot50}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.......+\frac{1}{49}+\frac{1}{50}\)
\(S=\frac{1}{2}-\frac{1}{50}\)
\(S=\frac{25}{50}-\frac{1}{50}\)
\(S=\frac{24}{50}=\frac{12}{25}\)
ai k mh mh k lại
k cho mh nha
S=1/2.3+1/3.4+1/4.5+....+1/49.50
=\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...........+\frac{1}{49x50}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{49}-\frac{1}{50}\)
=\(\frac{1}{2}-\frac{1}{50}\)
=\(\frac{24}{50}\) mình cũng ko chắc đúng nhưng đây là cách giải của mình
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{2}-\frac{1}{50}\)
\(=\frac{12}{25}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(S=1-\frac{1}{50}\)
\(S=\frac{49}{50}\)
S=1/2-1/3+1/3-1/4+1/4+...+1/49-1/50
S=1/2-1/50
S=12/25
\(S=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(s=\left(\frac{1}{2}-\frac{1}{50}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{49}-\frac{1}{49}\right)=\left(\frac{25}{50}-\frac{1}{50}\right)+0+...+0=\frac{24}{50}=\frac{12}{25}\)Vậy S=12/25
\(S=\frac{1}{2.3}+\frac{1}{3.4}+.................+\frac{1}{49.50}\)
=> \(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{49}-\frac{1}{50}\)
=> \(S=\frac{1}{2}+\left(\frac{-1}{3}+\frac{1}{3}\right)+.........+\left(\frac{-1}{49}+\frac{1}{49}\right)-\frac{1}{50}\)
=> \(S=\frac{1}{2}-\frac{1}{50}\)
=> \(S=\frac{24}{50}\)