Tính nhanh:
A= 1/2+1/2^2+1/2^3+....+1/2^100
B=3^2/2x4+3^2/4x6+3^2/6x8+....+3^2/198x200
C=\(\frac{\frac{2017}{1}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}}\)
D=1x2+2x3+3x4+4x5+...+48x49
E=\(^{1^2+2^2+3^2+...+48^2}\)
F=1x49+2x48+3x47+...+48x2+49x1
B = \(\frac{3^2}{2.4}+\frac{3^2}{4.6}+\frac{3^2}{6.8}+...+\frac{3^2}{198.200}\)
B = \(\frac{3^2}{2}.\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{3^2}{2}.\left(\frac{1}{4}-\frac{1}{6}\right)+\frac{3^2}{2}.\left(\frac{1}{6}-\frac{1}{8}\right)+...+\frac{3^2}{2}.\left(\frac{1}{198}-\frac{1}{200}\right)\)
B = \(\frac{3^2}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{198}-\frac{1}{200}\right)\)
B = \(\frac{9}{2}.\left(\frac{1}{2}-\frac{1}{200}\right)\)
B = \(\frac{9}{2}.\frac{99}{200}\)
B = \(\frac{891}{400}\)
D = 1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 + ... + 48 x 49
3D = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + 4 x 5 x 3 + ... + 48 x 49 x 3
3D = 1 x 2 x 3 + 2 x 3 x ( 4 - 1 ) + 3 x 4 x ( 5 - 2 ) + 4 x 5 x ( 6 - 3 ) + ... + 48 x 49 x ( 50 - 47 )
3D = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + 4 x 5 x 6 - 3 x 4 x 5 + ... + 48 x 49 x 50 - 47 x 48 x 49
3D = 48 x 49 x 50
D = ( 48 x 49 x 50 ) : 3
D = 39200
E = 12 + 22 + 32 + ... + 482
E = 1 x 1 + 2 x 2 + 3 x 3 + ... + 48 x 48
E = 1 x ( 2 - 1 ) + 2 x ( 3 - 1 ) + 3 x ( 4 - 1 ) + ... + 48 x ( 49 - 1 )
E = 1 x 2 - 1 + 2 x 3 - 2 + 3 x 4 - 3 + ... + 48 x 49 - 49
E = ( 1 x 2 + 2 x 3 + 3 x 4 + ... + 48 x 49 ) - ( 1 + 2 + 3 + ... + 49 )
Ta tính được vế trong ngoặc thứ nhất là 39200 , còn vế trong ngoặc thứ hai là 1225
thay vào ta được :
E = 39200 - 1225
E = 37975
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{100}}\)