\(\left(2+4+6+...+100\right).\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]:\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
Để í ngoặc \(\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]\)
\(\Leftrightarrow\left[\frac{6}{7}+-\frac{6}{7}\right]\)
\(\Leftrightarrow0\)
Vậy biểu thức \(\left(2+4+6+...+100\right).\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]:\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)có giá trị bằng 0