Đặt A = \(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
Nhân cả hai với 2 ta được :
2A = \(2\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
=> 2A = \(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
Trừ 2A cho A , ta được :
2A - A = \(\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
=> A = \(1-\frac{1}{2^{10}}\)
A=1/2+1/2^2+1/2^3+.............+1/2^10
2A=1+1/2+1/2^2+.............+1/2^9
2a-a=(1/2+1/2^2+1/2^3.....+1/2^10)-(1+1/2+1/2^2............+1/2^9)
=>a=1-1/2^10
=>a=1-1/1024
=>A=1023/1024