\(\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{8}\right)\times\left(1+\frac{1}{15}\right)\times...\times\left(1+\frac{1}{9999}\right)\)
\(=\frac{2^2}{1\cdot3}\times\frac{3^2}{2\cdot4}\times\frac{4^2}{3\cdot5}\times...\times\frac{100^2}{99\cdot101}\)
\(=\frac{2\cdot3\cdot4\cdot...\cdot100}{1\cdot2\cdot3\cdot...\cdot99}\times\frac{2\cdot3\cdot4\cdot...\cdot100}{3\cdot4\cdot5\cdot...\cdot101}\)
\(=\frac{100}{1}\times\frac{2}{101}=\frac{200}{101}.\)