\(10^2.13^{2016}+69.13^{2016}:13^{2017}\)
=\(\left(10^2+69\right).13^{2016}:13^{2017}\)
\(=169.13^{2016}:13^{2017}\)
=\(13.13.13^{2016}:13^{2017}\)
=\(13^{2018}:13^{2017}=13\)
\(3^{2019}:\left(3^{2020}-24.3^{2017}\right)\)
\(3^{2019}:\left(3^{2017}.3^3-24.3^{2017}\right)\)
\(=3^{2019}\left(3^{2017}.27-24.3^{2017}\right)=3^{2019}:\left(3.3^{2017}\right)=3^{2019}:3^{2018}=3\)