Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phùng Hải An

Tính nhanh tổng sau:

A=1/3+1/9+1/27+...+1/2187+1/6561

Giúp mình nha

Ngô Chi Lan
27 tháng 8 2020 lúc 20:54

Bài làm:

Ta có: \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}+\frac{1}{6561}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}+\frac{1}{3^8}\)

=> \(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}+\frac{1}{3^7}\) 

=> \(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\)

<=> \(2A=1-\frac{1}{3^8}=\frac{3^8-1}{3^8}\)

=> \(A=\frac{3^8-1}{3^8.2}\)

Khách vãng lai đã xóa
Bellion
27 tháng 8 2020 lúc 20:59

                          Bài làm :

Ta có :

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)

\(\Rightarrow3\times A=\frac{1\times3}{3}+\frac{1\times3}{9}+\frac{1\times3}{27}+...+\frac{1\times3}{6561}\)

\(3\times A=1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}\)

\(3\times A=1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}+\left(\frac{1}{6561}-\frac{1}{6561}\right)\)

\(3\times A=1+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}+\frac{1}{6561}\right)-\frac{1}{6561}\)

\(3\times A=1+A-\frac{1}{6561}\)

\(\Rightarrow2\times A=1-\frac{1}{6561}\)( Trừ bỏ A ở cả 2 vế )

\(2\times A=\frac{6560}{6561}\)

\(A=\frac{6560}{6561}\div2=\frac{3280}{6561}\)

Vậy A=3280/6561

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hồ Đinh Phương Ly
Xem chi tiết
Trần Duy Phương
Xem chi tiết
Phạm Yến
Xem chi tiết
Trần Nguyễn Bảo Minh
Xem chi tiết
nguyenphucthang
Xem chi tiết
nguyenphucthang
Xem chi tiết
lili
Xem chi tiết
phạm Thị Thanh
Xem chi tiết
Đoàn Thị Mai Hương
Xem chi tiết