\(B=\frac{-5}{3}+\frac{-5}{15}+\frac{-5}{35}+...+\frac{-5}{2499}\)
\(B=\frac{-5}{1.3}+\frac{-5}{3.5}+\frac{-5}{5.7}+...+\frac{-5}{49.51}\)
\(B=\frac{-5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(B=\frac{-5}{2}.\left[\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{49}-\frac{1}{51}\right)\right]\)
\(B=\frac{-5}{2}.\left[1-\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{49}-\frac{1}{49}\right)-\frac{1}{51}\right]\)
\(B=\frac{-5}{2}.\left(1-\frac{1}{51}\right)=\frac{-5}{2}.\frac{50}{51}=\frac{-125}{51}\)
=-5/1.3+-5/3.5+-5/5.7+.............+-5/49.51
-5/2(1-1/51)
=-125/51
ai k mk mk k lai
ok
B = -5/1.3 + -5/3.5 +.....+ -5/49.51
B = -5/2(1 - 1/51)
B = -5/2 . 50/51
B = -125/51 nha!