\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
\(=\left(\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{12}+\frac{1}{24}\right)+\left(\frac{1}{48}+\frac{1}{96}\right)\)
\(=\frac{1}{2}+\frac{1}{8}+\frac{1}{32}\)
\(=\frac{21}{32}\)
1/3 +1/6+1/12+1/24 +1/48 + 1/96
= 1/3 + 1/3 – 1/6 + 1/6 – 1/12+1/12 – 1/24 +1/24 – 1/48+1/48 -1/96
=2/3 – 1/96
= 21/32
1/1.3 + 1/3.2 + 1/2.6 + 1/6.4 + 1/4.12 + 1/12.8
= 1 - 1/3 + 1/3 - 1/2 + 1/2 - 1/6 + 1/6 - 1/4 + 1/4 -1/12 + 1/12 - 1/8
= 1 - 1/8
= 8/8 - 1/8
=7/8
đúng 100% nha...
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
= \(\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+\frac{1}{12}-\frac{1}{24}+\frac{1}{24}-\frac{1}{48}+\frac{1}{48}-\frac{1}{96}\)
= \(\frac{1}{3}+\frac{1}{3}-\frac{1}{96}\)
= \(\frac{2}{3}-\frac{1}{96}\)
= \(\frac{21}{32}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
\(2\times A=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}\)
\(2\times A-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)\)
\(A=\frac{2}{3}-\frac{1}{96}\)
\(A=\frac{21}{32}\)