Ta có:
\(B=\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{47.50}\)
\(=4.\left(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{47.50}\right)\)
\(\Rightarrow3B=4.\left(3.\left(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{47.50}\right)\right)\)
\(=4.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{47.50}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{47}-\frac{1}{50}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=4.\frac{12}{25}\)
\(=\frac{48}{25}\)
\(\Rightarrow B=\frac{48}{25}:3=\frac{16}{25}\)