\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}+\sqrt{1}\right)\left(\sqrt{2}-\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}+\sqrt{99}\right)\left(\sqrt{100}-\sqrt{99}\right)}\)
\(A=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
\(A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
\(A=\left(\sqrt{2}+\sqrt{3}+...+\sqrt{100}\right)-\left(\sqrt{1}+\sqrt{2}+...+\sqrt{99}\right)\)= \(\sqrt{100}-\sqrt{1}=10-1=9\)