Đặt \(A=1+2^1+2^2+....+2^{100}\)
=>\(2A=2^1+2^2+...+2^{101}\)
=>\(2A-A=\left(2^1+2^2+...+2^{101}\right)-\left(1+2^1+2^2+...+2^{100}\right)\)
=>\(A=2^{101}-1\)
\(A=1+2^1+2^2+...+2^{100}\)
\(2A=2^1+2^2+...+2^{100}+2^{101}\)
\(A=1+2^1+2^2+...+2^{100}\)
\(A=\frac{2^{101}-1}{1}\)
\(A=1+2^1+2^2+...+2^{100}\Rightarrow2A=2^1+2^2+...+2^{100}+2^{101}\)
\(2A-A=2^1+2^2+...+2^{100}+2^{101}-\left(1+2^1+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)