=3.(1/1.2+1/2.3+...+1/299.300)
=3.(1-1/2+1/2-1/3+...+1/299-1/300)
=3.(1-1/300)
=3.299/300
=299/100
=3.(1/1.2+1/2.3+...+1/299.300)
=3.(1-1/2+1/2-1/3+...+1/299-1/300)
=3.(1-1/300)
=3.299/300
=299/100
Tìm x (\(\frac{3}{1.2}+\frac{3}{3.4}+\frac{3}{5.6}+...+\frac{3}{299.300}\)) x (\(x+\frac{2}{3}\)) = \(\frac{2}{151}+\frac{2}{152}+...+\frac{2}{300}\)
Tìm x:
(\(\frac{3}{1.2}+\frac{3}{3.4}+\frac{3}{5.6}+...+\frac{3}{299.300}\)) X ( \(x+\frac{2}{3}\)) = \(\frac{2}{151}+\frac{2}{152}+\frac{2}{153}+...+\frac{2}{300}\)
Tính nhanh:
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.\frac{5^2}{5.6}\)
Tính tổng:S=\(\frac{3}{1.2}\)\(+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+...+\frac{3}{2015.1016}\)
Giúp Dii với ạ <<3
Mơn trước nhé <3
Tính
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
B=\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
Tính\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
Cho A= \(\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
và B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{2019.2010}\)
So sánh A và B
Tính: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+..........+\frac{1}{997.998}+\frac{1}{999.1000}\)
Tính: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.......+\frac{1}{997.998}+\frac{1}{999.1000}\)