Tính giá trị biểu thức:A=(1+\(\dfrac{x}{z}\)).(1-\(\dfrac{y}{z}\)).(1-\(\dfrac{z}{y}\))với -x+y-z=0
Cho 3 đa thức : F=x^2+y+z; G= y^2-xyz và H=z^2-xy. Chứng minh rằng khi x,y,z lấy giá trị bất kì khác 0 thỏa x+y=z^3 thì trong 3 đa thức trên có ít nhất 1 đa thức có giá trị dương
1)Tính giá trị các đa thức sau:
a) (x+y)(y+z)(x+z) biết xyz=2 và x+y+z=0
b)4 x^4 + 7 x^2 y^2 + 3 y^4 + 5 y^2, biết x^2 + y^2=0
cho x,y,z khác 0 và x-y-z=0, tính giá trị của biểu thức B=(1-z/x) (1-x/y) (1+y/z)
Cho x,y,z khác không và x+y-z=0 .Tính giá trị của biểu thức A=(1-z/x)(1+x/y)(1-y/z).
Cho x,y,z khác 0 và x-y-z=0. Tính giá trị biểu thức A=(1-z/x)(1-x/y)(1+y/z)
Cho x, y, z khác 0 và x - y - z = 0. Tính giá trị của biểu thức: B = (1 - z/x)(1 - x/y)(1 + y/x)
Tính giá trị biểu thức:
a) F= (1+x/z)*(1-y/z)*(1-z/y) tại x,y,z khác 0 và x+y-z=0
b) G= (x+y)*(y+1)*(x+1) biết x*y=2 và x+y+1=0