1/
\(A=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab\)
\(A=\left(a^3-3a^2b+3ab^2-b^3\right)+\left(a^2-2ab+b^2\right)=\left(a-b\right)^3+\left(a-b\right)^2=7^3+7^2=392\)
1/
\(A=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab\)
\(A=\left(a^3-3a^2b+3ab^2-b^3\right)+\left(a^2-2ab+b^2\right)=\left(a-b\right)^3+\left(a-b\right)^2=7^3+7^2=392\)
a) Cho a,b,c đều khác nhau đôi một và \(\frac{a+b}{c}=\frac{b+a}{a}=\frac{c+a}{b}\)
Tính giá trị của biểu thức P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
b) Cho abc khác 0 và đôi một khác nhau thỏa mãn a+b+c=0
Tính giá trị biểu thức \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-a}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
cho a,b,c là các số thực khác 0 và thỏa mãn ab+bc+ca=1.
Tính giá trị của biểu thức: M=\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}-\frac{2}{\left(a-b\right)\left(b+c\right)\left(c+a\right)}\)
Cho các số thực a, b, c đôi một khác nhau thỏa mãn ab + bc + ca = 1. Tính giá trị của biểu thức:\(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{^{\left[ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\right]^2}}\)
1.Chứng minh rằng: \(x^5+y^5\ge x^4y+xy^4\)với \(x,y\ne0;x+y\ge0\)
2.Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)
Tính : \(P=\frac{\left(a+b\right)\left(b+a\right)\left(a+c\right)}{abc}\)
Các thánh lại giải bài này đi!!!
Cho ba số khác 0 thoả mãn \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) . Tính giâ trị của biểu thức \(M=2020\left(a^3+b^3\right)\left(b^5+c^5\right)\left(c^7+a^7\right)+2019\)
Bài 6 : tính giá trị của biểu thức.
Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)Cho ba số a, b, c khác 0 thỏa nãm đẳng thức :Tính : P =
Cho 3 số a,b,c đôi một khác 0, tính giá trị của biểu thức:
\(A=\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
thỏa mãn điều kiện: \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Cho 3 số a,b,c khác nhau đôi một và khác 0,đồng thời thỏa mãn điều kiện \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\).Tính giá trị biểu thức A=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho a, b là các số khác 0 và thỏa mãn \(a^3+b^3+c^3=3abc\).
Tính giá trị của biểu thức:
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)