Từ đề bài \(\Rightarrow\)\(x^2-2y^2-xy=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)
\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{1}{3}\)
Vì \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-xy-y^2=0\)
\(\Leftrightarrow\left(x-y\right)^2-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Theo đề bài thì có :
\(x+y\ne0\)
\(\Rightarrow x-2y=0\)
\(\Leftrightarrow x=2y\)
Từ đó ta lại có :
\(P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Vậy .......
ta có
x2-2y2=xy
<=> x2 -xy -2y2 =0
<=> (x-2y)(x+y)=0
=>\(\orbr{\begin{cases}x=2y\\x+y=0\left(loại\right)\end{cases}}\)
nếu x=2y thì P=1/3
\(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-xy-2y^2=0\)
\(\Leftrightarrow x^2-2x.\frac{y}{2}+\left(\frac{y}{2}\right)^2-\frac{9}{4}y^2=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}y\right)^2-\left(\frac{3}{2}y\right)^2=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}y-\frac{3}{2}y\right)\left(x-\frac{1}{2}y+\frac{3}{2}y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2y=0\\x+y=0\end{cases}}\)
do theo đề ra ta có:\(x+y\ne0\Leftrightarrow x+y\)không thỏa mãn
\(\Rightarrow x-2y=0\Leftrightarrow x=2y\)
\(\Rightarrow P=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
vậy \(P=\frac{1}{3}\)
youtube tui KioSan MCBG 477 subs