Tính giá trị của biểu thức P= \(28x^5-2x^4-2013x^3+14606x-3454\) ,biết: \(\frac{x}{x^2+x+1}=\frac{1}{4}\)
Tính giá trị của biểu thức P= \(28x^5-2x^4-2013x^3+14606x-3454\) ,biết: \(\frac{x}{x^2+x+1}=\frac{1}{4}\)
Tính GTBT : P=28x^5 - 2x^4- 2013x^2 + 14606x - 3454 khi x/(x^2+x+1)=1/4
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Cho x = \(\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính giá trị biểu thức:
\(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-2\sqrt{x}}{\sqrt{2x^2}+2x}\right)^{2017}\) tại giá trị x đã cho
Tính giá trị biểu thức P=\(\frac{x^5-4^3-17x+9}{x^4+3x^2+2x+11}\) với \(\frac{x}{x^2+x+1}=\frac{1}{4}\)
Chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến x .
M=\(\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\)
Cho biểu thức \(P=\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}\left(x\ne-6,x\ne6,x\ne0,x\ne3\right)\)
a, Rút gọn biểu thức P.
b, Tìm x, để giá trị của P=1.
c, Tìm x, để P < 0
Cho \(A=\frac{x-5}{x-4}\) và \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
ĐKXĐ: x≠ 0,x≠ 4,x≠ 5
a)tính giá trị của A khi 2x^2 -3x=0
b)rút gọn B
c)tìm giá trị nguyên của x để P=A:B có giá trị nguyên
Cho biểu thức:
\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)
1, Tìm điều kiện xác định của biểu thức P. Rút gọn biểu thức P
2, Tìm x để P = 2
3, Tính giá trị của biểu thưc P tại x thỏa mãn \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
4. Tìm giá trị x để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
5. Tìm tất cả các giá trị nguyên của x để biểu thức P nhận giá trị nguyên