\(N=\log_{\frac{1}{3}}5\log_{25}\frac{1}{7}=\log_{3^{-1}}5\log_{5^5}3^{-3}=\left(-5\right)\left(-\frac{3}{2}\right).\log_35\log_53=\frac{15}{2}\)
\(N=\log_{\frac{1}{3}}5\log_{25}\frac{1}{7}=\log_{3^{-1}}5\log_{5^5}3^{-3}=\left(-5\right)\left(-\frac{3}{2}\right).\log_35\log_53=\frac{15}{2}\)
Tính giá trị của biểu thức :
\(E=25^{\frac{1}{2}+\frac{1}{9}\log_{\frac{1}{5}}27+\log_{125}81}\)
Tính toán các biểu thức
a) \(A=\log_{\frac{1}{25}}5\sqrt[4]{5}\)
b) \(B=9^{\frac{1}{2}\log_32-2\log_{27}3}\)
c) \(C=\log_3\log_28\)
d) \(D=2\log_{\frac{1}{3}}6-\frac{1}{2}\log_{\frac{1}{2}}400+3\log_{\frac{1}{3}}\sqrt[3]{45}\)
Cho x, y, z là các số thực dương đôi một khác nhau và khác 1 thỏa mãn
\(\log_ax=1+\log_ax.\log_az;\log_ay=1+\log_ay.\log_ax\)
Tính giá trị biểu thức sau :
\(A=\log_{\frac{a}{x}}a.\log_{\frac{a}{y}}a.\log_{\frac{a}{z}}a\log_xa.\log_ya.\log_za\)
Tính toán các biểu thức có điều kiện :
a) Tính \(A=\log_616\) biết \(\log_{12}27=a\)
b) Tính \(B=\log_{125}30\) biết \(lg3=a\) và \(lg2=b\)
c) Tính \(C=\log_635\) biết \(\log_{25}5=a\) ;\(\log_87=b;\log_23=c\)
d) Tính \(D=\log_{\frac{\sqrt{b}}{a}}\frac{\sqrt[3]{b}}{\sqrt{a}}\) biết \(\log_ab=\sqrt{3}\)Hãy biểu diễn theo a ( hoặc cả b hoặc cả c) các biểu thức sau :
\(H=\log_{\sqrt[3]{5}}\frac{49}{8}\) biết \(\log_{25}7=a\) và \(\log_25=b\)
Tính giá trị của biểu thức :
\(B=\log_{3-2\sqrt{2}}\left(27^{\log_92}+2^{\log_827}\right)\)
Tính giá trị biểu thức :
\(A=\log_{2013}\left\{\log_4\left(\log_2256\right)-\log_{0,25}\left[\log_9\left(\log_464\right)\right]\right\}\)
Đơn giản biểu thức sau :
\(M=lg\left|\log_{\frac{1}{a^3}}\sqrt[5]{a\sqrt{a}}\right|\)
Chứng minh :
Trong 3 số : \(\log_{\frac{a}{b}}^2\frac{c}{b};\log_{\frac{b}{c}}^2\frac{a}{c};\log_{\frac{c}{a}}^2\frac{b}{a}\) luôn có ít nhất một số lớn hơn 1