1^2.2^2.3^2-2015/1.2.3+2^2.3^2.4^2-2015/2.3.4
c/minh: A=3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+.......+4031/2015^2.2016^2<1
chứng minh \(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{4031}{2015^2.2016^2}< 1\)
CHỨNG MINH RẰNG : \(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{4031}{2015^2.2016^2}< 1\)
CHỨNG MINH RẰNG
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+......+\frac{4031}{2015^2.2016^2}< 1\)
2/2.3+2/3.4+2/4.+.......+2/x.(x+1)=2013/2015
CMR:
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.......+\frac{4029}{2014^2.2015^2}< 1\) 1
Rút gọn biểu thức:
M = \(\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)
N = \(\frac{1^{2015}+2^{2015}+3^{2015}+....+10^{2015}}{2^{2015}+4^{2015}+6^{2015}+....+20^{2015}}\)
Tính giá trị của biểu thức \(A=2^{2015}-\left(2^{2014}+2^{2013}+...+2+1\right)\)ta đc A=_____