\(ChoM=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{999}\\ N=\frac{1}{1.999}+\frac{1}{3.997}+...+\frac{1}{997.3}+\frac{1}{999.1}\\ Tính\frac{M}{N}\)
Tính nhanh \(C=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{\frac{1}{1.999}+\frac{1}{3.997}+...+\frac{1}{997.3}+\frac{1}{999.1}}\)
Giải chi tiết cho mk nha, thanks!
Tính:
A= \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{2006}}\)
B= \(\frac{1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{999}}{\frac{1}{1.999}+\frac{1}{3.997}+.....+\frac{1}{997.3}+\frac{1}{999.1}}\)
\(C=\frac{1}{1.999}+\frac{1}{3.997}+...+\frac{1}{997.3}+\frac{1}{999.1}\)
Tính A=\(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{\frac{1}{1.999}+\frac{1}{3.997}+...+\frac{1}{999.1}}\)
\(\frac{1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{999}}{\frac{1}{1.999}+\frac{1}{3.997}+....\frac{1}{997.3}+\frac{1}{991.1}}\)
Tìm x biết: \(\frac{3}{2x+1}\)+ \(\frac{10}{4x+2}\)- \(\frac{6}{6x+3}\)=\(\frac{12}{26}\)
Chứng minh rằng: \(\frac{1}{5^2}\)+ \(\frac{1}{6^2}\)+...+ \(\frac{1}{2007^2}\)> \(\frac{1}{5}\)
rút gọn: M = ( 1+\(\frac{1}{3}\)+ \(\frac{1}{5}\)+ ... + \(\frac{1}{999}\)) : (\(\frac{1}{1.999}\)+ \(\frac{1}{3.997}\)+...+\(\frac{1}{997.3}\)+\(\frac{1}{999.1}\))
Giúp mình nha!!!
tính giá trị biểu thức 1/1.999+1/3.997+...+1/997.3+1/999.1
Tính giá trị biểu thức :
B = -1/3 + 1/3^2 - 1/3^3 +.....+1/3^100 - 1/3^101
C = (1+1/3+1/5+...+1/999)/(1/1.999 + 1/3.997 + ... + 1/997.3 + 1/999.1)