3 số a,b,c thỏa mãn
\(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}=a+b+c\)
tính giá trị bểu thức \(A=\frac{a^2+b^2}{\left(a+c\right)\left(b+c\right)}+\frac{b^2+c^2}{\left(b+a\right)\left(c+a\right)}+\frac{c^2+a^2}{\left(c+b\right)\left(a+b\right)}\)
ai biết lm bài này ko
Cho a, b, c là 3 số đôi một khác nhau. Tính giá trị của biểu thức :
\(M=\frac{ab}{\left(a-c\right)\left(b-c\right)}+\frac{bc}{\left(b-a\right)\left(c-a\right)}+\frac{ca}{\left(c-b\right)\left(a-b\right)}\)
cho a,b,c là các số thực khác 0 và thỏa mãn ab+bc+ca=1.
Tính giá trị của biểu thức: M=\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}-\frac{2}{\left(a-b\right)\left(b+c\right)\left(c+a\right)}\)
Bài 1 Rút gọn biểu thức
\(\frac{\left(x+\frac{1}{x^4}\right)-\left(x^4+\frac{1}{x^4}\right)-2}{\left(x+\frac{1}{x}\right)^4+x^2+\frac{1}{x^2}}.\frac{x^4+1999x^2+1}{2x^2}\)
Bài 2: Cho a,b,c thoả mãn
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^2}{c^2+ca+a^2}=1006\)
tính giá trị biểu thức
M=\(\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Giá trị của biểu thức P=\(\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)
khi a+b+c=1 và a khác-b, b khác -c và c khác -a là:
Giá trị của biểu thức \(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\) khi \(a+b+c=1\) và a ≠ -b; b ≠ -c; c ≠ -a là:
cho a + b + c = \(\frac{1}{2}\)tính giá tri biểu thức:
P = \(\frac{a+b}{ab}\left(a^2+b^2-c^2\right)+\frac{c+b}{bc}\left(b^2+c^2-a^2\right)+\frac{c+a}{ca}\left(c^2+a^2-b^2\right)\)
Tính giá trị của biểu thức:
\(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)khi a+b+c=1 và \(a\ne-b;b\ne-c;c\ne-a\).
Bài 1. Cho a+b+c=0. Đặt P=\(\frac{a-b}{b}+\frac{b-c}{a}+\frac{c-a}{b}\); Q=\(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\).Tính P.Q
b) Rút gọn rồi tính giá trị biểu thức E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\)biết \(1-\frac{x^2}{abc}=0\)