\(E=\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+.....+\frac{15}{74.77}\)
\(=\frac{15}{3}\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+....+\frac{1}{74}-\frac{1}{77}\right)\)
\(=\frac{15}{3}\left(\frac{1}{11}-\frac{1}{77}\right)\)
\(=\frac{30}{77}\)
\(E=\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+......+\frac{15}{74.77}\)
\(\frac{15}{3}E\left(\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}+...+\frac{1}{74.77}\right)\)
\(\frac{15}{3}E=\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{74}-\frac{1}{77}\right)=>\frac{15}{3}E\left(\frac{1}{77}-1\right)\)
=>\(E=\frac{30}{77}\)
\(E=\frac{15}{11.14}+\frac{15}{14.17}+....+\frac{15}{74.77}\)
\(E=\frac{15}{3}\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{74}-\frac{1}{77}\right)\)
\(E=\frac{15}{3}\left(\frac{1}{11}-\frac{1}{77}\right)\)
\(E=\frac{30}{77}\)
\(E=\frac{15}{11.14}+\frac{15}{14.17}+....+\frac{15}{74.77}\)
\(E=\frac{15}{3}\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{74}-\frac{1}{77}\right)\)
\(E=\frac{15}{3}\left(\frac{1}{11}-\frac{1}{77}\right)\)
\(E=\frac{30}{77}\)
\(E=\frac{15}{11.14}+\frac{15}{14.17}+....+\frac{15}{74.77}\)
\(E=\frac{15}{3}\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{74}-\frac{1}{77}\right)\)
\(E=\frac{15}{3}\left(\frac{1}{11}-\frac{1}{77}\right)\)
\(E=\frac{30}{77}\)
\(E=\frac{15}{11.14}+\frac{15}{14.17}+....+\frac{15}{74.77}\)
\(E=\frac{15}{3}\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{74}-\frac{1}{77}\right)\)
\(E=\frac{15}{3}\left(\frac{1}{11}-\frac{1}{77}\right)\)
\(E=\frac{30}{77}\)