\(\frac{26^{2014}.12^{2014}}{24^{2015}.13^{2015}}=\frac{\left(26.12\right)^{2014}}{\left(24.13\right)^{2015}}=\frac{312^{2014}}{312^{2015}}=\frac{1}{312}\)
\(\frac{26^{2014}.12^{2014}}{24^{2015}.13^{2015}}=\frac{\left(26.12\right)^{2014}}{\left(24.13\right)^{2015}}=\frac{312^{2014}}{312^{2015}}=\frac{1}{312}\)
Tính nhanh \(\frac{26^{2014}\cdot12^{2014}}{24^{2015}\cdot13^{2015}}\)
CMR: Nếu \(\frac{a+2014}{a-2014}=\frac{b+2015}{b-2015}thì\frac{a}{2014}=\frac{b}{2015}\)
Chứng minh rằng nếu có: \(\frac{a+2014}{a-2014}=\frac{b+2015}{b-2015}\)thì: \(\frac{a}{2014}=\frac{b}{2015}\)
Cho : a,b,c,d \(\ne\) 0 Tính T = x2015 + y2015 + z2015 + t2015
Biết \(\frac{x^{2014}+y^{2014}+z^{2014}+t^{2014}}{a^2+b^2+c^2+d^2}\)=\(\frac{x^{2014}}{a^2}\)+\(\frac{y^{2014}}{b^2}\)+\(\frac{z^{2014}}{c^2}\)+\(\frac{t^{2014}}{d^2}\)
tính kết quả
\(\frac{1}{2016}-\frac{1}{2016}.2015-\frac{1}{2015}.2014-\frac{1}{2014}.2013-...-\frac{1}{3}.2-\frac{1}{2}.1\)
\(\frac{1}{2016}-\frac{1}{2016}.2015-\frac{1}{2015}.2014-\frac{1}{2014}.2013-...-\frac{1}{3}.2-\frac{1}{2}.1\)
Tính nhanh biểu thức trên
So sánh M và N biết:
M=\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
N=\(\frac{2014+2015+2016}{2015+2016+2017}\)
Tính \(|\frac{1}{2015}+\frac{1}{2014}|+|\frac{1}{2015}+\frac{1}{2016}|\)
Không tính giá trị hãy so sánh:
\(\frac{2014}{2015}\) + \(\frac{2015}{2016}\) + \(\frac{2016}{2014}\) với 3