tính kết quả
\(\frac{1}{2016}-\frac{1}{2016}.2015-\frac{1}{2015}.2014-\frac{1}{2014}.2013-...-\frac{1}{3}.2-\frac{1}{2}.1\)
\(\frac{1}{2016}-\frac{1}{2016}.2015-\frac{1}{2015}.2014-\frac{1}{2014}.2013-...-\frac{1}{3}.2-\frac{1}{2}.1\)
Tính nhanh biểu thức trên
Thực hiện phép tính:
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)
Thực hiện phép tính:
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}...+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)
đang cần rất gấp mọi người ạ :3
#thanks nhieeuf2 .
Cho S=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
P=\(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...........+\frac{1}{2014}+\frac{1}{2015}\)
Tính (S-P)2016
\(Tính:B=\frac{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
a)A=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
b)A =\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\)và B = \(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{3}{2016}\)
Tính \(\frac{B}{A}\)
cho A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2016}+\frac{1}{2017}\)
va B=\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+......+\frac{2}{2015}+\frac{1}{2016}\)
Tinh ti so \(\frac{A}{B}\)
Tính B=\(\frac{2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}+\frac{1}{1+2+3+...+2015}}\)