Đặt Q = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{997.998}+\frac{1}{999.1000}\)
Đặt A = \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{997.999}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{997}-\frac{1}{999}\)
\(2A=1-\frac{1}{999}\)
\(2A=\frac{998}{999}\)
\(\Leftrightarrow A=\frac{499}{999}\)
Đặt B = \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{998.1000}\)
\(2B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{998}-\frac{1}{1000}\)
\(2B=\frac{1}{2}-\frac{1}{1000}\)
\(B=\frac{499}{1000}\)
Vậy Q = A + B = \(\frac{499}{999}+\frac{499}{1000}\)