Vì AD là phân giác nên \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\Rightarrow\dfrac{DC}{AC}=\dfrac{BD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DC}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow DC=\dfrac{40}{7}cm;BD=\dfrac{30}{7}cm\)

Cho tam giác ABC có AB = 16cm, AC = 24cm, BC = 30cm. Đường phân giác của góc BAC cắt cạnh BC tại D.Qua D kẻ DE //AB (E AC) a/ Tính độ dài các đoạn thẳng DB, DC và DE. b/ Tính tỉ số diện tích của hai tam giác ABD và ACD.