Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3 a 2
A. a 3 3 12
B. a 3 3 6
C. a 3 3 4
D. a 3 2 3
Thiết diện qua trục của một hình nón là tam giác đều cạnh bằng 2. Một mặt cầu có diện tích bằng diện tích toàn phần của hình nón. Tính bán kính của mặt cầu.
![]()
![]()
![]()
![]()
Cho hình bát diện đều cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình bát diện đó. Tính S.
A. S = 8 a 2
B. S = 4 3 a 2
C. S = 2 3 a 2
D. S = 3 a 2
Tính diện tích toàn phần S của hình chóp có đáy là hình vuông diện tích bằng 4 và các mặt bên là các tam giác đều.
A. S = 4
B. S = 4 + 3
C. S = 4 + 4 3
D. S = 4 + 4 2
Cắt một khối trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a. Tính diện tích toàn phần của khối trụ.
A. a 2 π 3 2
B. 27 a 2 π 2
C. a 2 π 3
D. 13 a 2 π 2
Cho khối hộp ABCD.A'B'C'D' có thể tích bằng 2018. Gọi M là trung điểm của cạnh AB. Mặt phẳng (MB'D') chia khối chóp ABCD.A'B'C'D' thành hai khối đa diện. Tính thể tích phần khối đa diện chứa đỉnh A
A. 5045 6
B. 7063 6
C. 10090 17
D. 7063 12
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V . Tính V .
A. 7 2 a 3 216
B. 11 2 a 3 216
C. 13 2 a 3 216
D. 2 a 3 18
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.




Cho khối đa diện đều n mặt có thể tích V và diện tích mỗi mặt của nó bằng S. Khi đó, tổng các khoảng cách từ một điểm bất kỳ bên trong khối đa diện đó đến các mặt bên bằng
A. V 3 S
B. n V S
C. 3 V S
D. V n S